Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 15: 1383167, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645690

RESUMEN

Introduction: During pneumoperitoneum (PNP), airway driving pressure (ΔPRS) increases due to the stiffness of the chest wall and cephalic shift of the diaphragm, which favors atelectasis. In addition, depending on the mechanical power (MP) formulas, they may lead to different interpretations. Methods: Patients >18 years of age with body mass index >35 kg/m2 were included in a single-center randomized controlled trial during their admission for bariatric surgery by abdominal laparoscopy. Intra-abdominal pressure was set at 15 mmHg at the pneumoperitoneum time point (PNP). After the recruitment maneuver, the lowest respiratory system elastance (ERS) was detected during the positive end-expiratory pressure (PEEP) step-wise decrement. Patients were randomized to the 1) CTRL group: ventilated with PEEP of 5 cmH2O and 2) PEEPIND group: ventilated with PEEP value associated with ERS that is 5% higher than its lowest level. Respiratory system mechanics and mean arterial pressure (MAP) were assessed at the PNP, 5 min after randomization (T1), and at the end of the ventilation protocol (T2); arterial blood gas was assessed at PNP and T2. ΔPRS was the primary outcome. Three MP formulas were used: MPA, which computes static PEEP × volume, elastic, and resistive components; MPB, which computes only the elastic component; and MPC, which computes static PEEP × volume, elastic, and resistive components without inspiratory holds. Results: Twenty-eight patients were assessed for eligibility: eight were not included and 20 patients were randomized and allocated to CTRL and PEEPIND groups (n = 10/group). The PEEPIND ventilator strategy reduced ΔPRS when compared with the CTRL group (PEEPIND, 13 ± 2 cmH2O; CTRL, 22 ± 4 cmH2O; p < 0.001). Oxygenation improved in the PEEPIND group when compared with the CTRL group (p = 0.029), whereas MAP was comparable between the PEEPIND and CTRL groups. At the end of surgery, MPA and MPB were correlated in both the CTRL (rho = 0.71, p = 0.019) and PEEPIND (rho = 0.84, p = 0.020) groups but showed different bias (CTRL, -1.9 J/min; PEEPIND, +10.0 J/min). At the end of the surgery, MPA and MPC were correlated in both the CTRL (rho = 0.71, p = 0.019) and PEEPIND (rho = 0.84, p = 0.020) groups but showed different bias (CTRL, -1.9 J/min; PEEPIND, +10.0 J/min). Conclusion: Individualized PEEP was associated with a reduction in ΔPRS and an improvement in oxygenation with comparable MAP. The MP, which solely computes the elastic component, better reflected the improvement in ΔPRS observed in the individualized PEEP group. Clinical Trial Registration: The protocol was registered at the Brazilian Registry of Clinical Trials (U1111-1220-7296).

2.
Crit Care ; 27(1): 118, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36945013

RESUMEN

BACKGROUND: The profile of changes in airway driving pressure (dPaw) induced by positive-end expiratory pressure (PEEP) might aid for individualized protective ventilation. Our aim was to describe the dPaw versus PEEP curves behavior in ARDS from COVID-19 patients. METHODS: Patients admitted in three hospitals were ventilated with fraction of inspired oxygen (FiO2) and PEEP initially adjusted by oxygenation-based table. Thereafter, PEEP was reduced from 20 until 6 cmH2O while dPaw was stepwise recorded and the lowest PEEP that minimized dPaw (PEEPmin_dPaw) was assessed. Each dPaw vs PEEP curve was classified as J-shaped, inverted-J-shaped, or U-shaped according to the difference between the minimum dPaw and the dPaw at the lowest and highest PEEP. In one hospital, hyperdistention and collapse at each PEEP were assessed by electrical impedance tomography (EIT). RESULTS: 184 patients (41 including EIT) were studied. 126 patients (68%) exhibited a J-shaped dPaw vs PEEP profile (PEEPmin_dPaw of 7.5 ± 1.9 cmH2O). 40 patients (22%) presented a U (PEEPmin_dPaw of 12.2 ± 2.6 cmH2O) and 18 (10%) an inverted-J profile (PEEPmin_dPaw of 14,6 ± 2.3 cmH2O). Patients with inverted-J profiles had significant higher body mass index (BMI) and lower baseline partial pressure of arterial oxygen/FiO2 ratio. PEEPmin_dPaw was associated with lower fractions of both alveolar collapse and hyperinflation. CONCLUSIONS: A PEEP adjustment procedure based on PEEP-induced changes in dPaw is feasible and may aid in individualized PEEP for protective ventilation. The PEEP required to minimize driving pressure was influenced by BMI and was low in the majority of patients.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Respiración Artificial , COVID-19/terapia , Respiración con Presión Positiva/métodos , Síndrome de Dificultad Respiratoria/terapia , Oxígeno/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...